Linear Algebra

CENG 499
Introduction to Data Science

Erdogan Dogdu

Content

* Vectors
e Matrices

Vectors

* Points in some finite-dimensional space
e Example:
— heights, weights, and ages of people

— three dimensional vector (python list)

* height_weight_age = [70, # inches,
170, # pounds,
40 | # years

— 4 exam grades of students in a class

— 4-dimensional vector
* grades = [95, # exam1

80, # exam2

75, #exam3

62] # exam4

Vector operations

* Python lists are not vectors,

so let’s implement 1

. Add two vectors .
[1, 2] + [2, 1] 20|

= [1+42, 2+1] s
=[3, 3] ::

def vector add(v, w):
"""adds corresponding elements"""

return [v_1 + w_1 0 1 2 3

for V_'.L, W_i. .i'n Z:LD(V, W)] D vectors

Vector operations

def vector subtract(v, w):
subtracts corresponding elements
return [v.1 - w_1

for v_i, w_i1 in zip(v, w)]

mmnn monn

def vector sum(vectors):
"""sums all corresponding elements

mnn

result = vectors[0] # start with the first vector
for vector in vectors[1:]: # then loop over the others
result = vector_add(result, vector) # and add them to the result

return result

def vector sum(vectors):
return reduce(vector_add, vectors)

Vector operations

def scalar _multiply(c, v):
¢ is a number, v is a vector
return [c * v_1 for v_1 in v]

mmn mnmn

def vector mean(vectors):
"""compute the vector whose ith element is the mean of the
ith elements of the input vectors"""
n = len(vectors)

return scalar_multiply(1/n, vector_sum(vectors))

Vector operations

(vew)w
15}
1.0}
0.5}
0.0}
-0.5
-0.5 0.0 0.5 1.0 1.5 2.0

2.5

d ef dot (vV, W) . Figure 4-2. The dot product as vector projection
"""V_l * W_1 + vu. + VD * W_n"""

return sum(v_1 * w_1
for v.1, w_1 in zip(v, w))

Vector operations

def sum_of squares(v):
"My 1 *v i1+ ... +Vv.n*vn
return dot(v, v)

mmnn

import math

def magnitude(v):
return math.sqrt(sum_of _squares(v)) # math.sqrt is square root function

Vector operations

e Distance b/w two

\/(vl ~w)+t (v, —w,)?
vectors

def squared distance(v, w):
"y 1 - w 1) ** 2+ ... + (v.n - w_n) **2"""
return sum_of squares(vector_subtract(v, w))

def distance(v, w):
return math.sqrt(squared_distance(v, w))

def distance(v, w):
return magnitude(vector_subtract(v, w)) '

Vectors operations

Using lists as vectors is great for exposition
out terrible for performance.

n production code, you would want to use
the NumPy library, which includes a high-
performance array class with all sorts of
arithmetic operations included.

Matrices

e Two dimensional

* Lists of lists in python

A

[[1,
[4,

2, 3],
5, 6]]

21,
4],
6]]

A has 2 rows and 3 columns

B has 3 rows and 2 columns

Matrix operations

def shape(A):
num_rows = Len(A)
num_cols = len(A[0]) if A else 0 # number of elements in first row
return num_rows, num_cols

def get row(A, i):
return A[i] # A[1] is already the ith row

def get_column(A, j):
return [A_i[]] # jth element of row A_1
for A_1 in A] # for each row A_1i

Matrix ops

def make matrix(num_rows, num_cols, entry_fn):
"""returns a num_rows x num_cols matrix
whose (i,3j)th entry is entry_fn(i, j)"""
return [[entry_fn(i, j) # given i1, create a list
for j in range(num_cols)] # [entry fn(i, 0), ...]
for 1 in range(num_rows)] # create one list for each 1i

def is_diagonal(i, j):
"""1's on the 'diagonal', @'s everywhere else"""
return 1 if 1 == j else 0

make_matrix(5, 5, is_diagonal)

identity_matrix

[[1’ 0’ 0’ 0’ 0]’
[0, 1, 0, 6, 0],
[0, 6, 1, 6, 0],
[0’ 0’ 0’ 1’ 0]’
[0, 0, 0, 0, 1]]

Matrix ops

* heights, weights, and ages of 1,000 people
— 1, 000 x 3 matrix

data = [[70, 170, 40],
(65, 120, 26],
77, 250, 19],
- R

]

Matrix ops

(4’ S)’ (S’ 6)’ (5’ 7)’ (6’ 8)’ (7’ 8)’ (8’ 9)]

[(e, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4),

friendships

user @ 1 2 3 4 5 6 7 8 9

#

#
friendships = [

@ ™ MY W WON DO

(S S S S S S S S S

U UU YUY U YUY YU Q

M T u W W v B \»

3 3333333 33

TR R R R R R R
-

3
3
3
49
3
3
3
3
1]

IOd IOd IOC IO IOd IOd IOd IOd l1d 0
- - = - = - - = " =

O 000 00 O v © v

LN LY - LY -

- -
OO0 OO0 -1 OO0 1O

LN LY - C Y -

- -
OO0 OO0 100 1O

- = - = - - = -

- -
OO0 O -1 O vr1v11 O O

LN LY - LY -

- -
OO0 -1 O -1 00 © O
- LN LY - C Y " =
D ™l O H O 000 0O
- " = LY - LY - =
™ - O -1 OO0 00 OO
- LN LY - LY " =
™Y O ™ -1 O 0 00 O O
LN LY - C Y -

0110000000

d e d e d d d

Matrix ops

friendships[0][2] == 1 # True, 0 and 2 are friends
friendships[0][8] == 1 # False, 0@ and 8 are not friends

friends_of _five = [1i # only need
for 1, is_friend in enumerate(friendships[5]) # to look at
if is_friend] # one row

Read more

* Linear Algebra, from UC Davis
— https://www.math.ucdavis.edu/~linear/

* Linear Algebra, from Saint Michael’s College
— http://joshua.smcvt.edu/linearalgebra/

