Linear Algebra

CENG 499
Introduction to Data Science

Erdoğan Doğdu

Content

- Vectors
- Matrices

Vectors

- Points in some finite-dimensional space
- Example:
- heights, weights, and ages of people
- three dimensional vector (python list)
- height_weight_age = [70, \# inches, 170, \# pounds, 40] \# years
- 4 exam grades of students in a class
- 4-dimensional vector
- grades = [95, \# exam1

80, \# exam2
75, \# exam3
62] \# exam4

Vector operations

- Python lists are not vectors,
so let's implement
- Add two vectors

$$
\begin{aligned}
& {[1,2]+[2,1]} \\
& =[1+2,2+1] \\
& =[3,3]
\end{aligned}
$$

def vector_add(v, w): """adds corresponding elements""" return [$v_{-} i+w_{-} i$

$$
\text { for } \left.v_{-} i, w_{-} i \text { in } \operatorname{zip}(v, w)\right]
$$

Vector operations

```
def vector_subtract(v, w):
    """subtracts corresponding elements"""
    return [v_i - w_i
            for v_i, w_i in zip(v, w)]
```

```
def vector_sum(vectors):
    """sums all corresponding elements"""
    result = vectors[0]
    for vector in vectors[1:]:
        result = vector_add(result, vector)
    return result
```

def vector_sum(vectors):
return reduce(vector_add, vectors)

Vector operations

```
def scalar_multiply(c, v):
    """c is a number, v is a vector"""
    return [c * v_i for v_i in v]
```

def vector_mean(vectors):
"""compute the vector whose ith element is the mean of the
ith elements of the input vectors"""
n = len(vectors)
return scalar_multiply(1/n, vector_sum(vectors))

Vector operations

Figure 4-2. The dot product as vector projection
def $\operatorname{dot}(v, w)$:
"""v_1 * w_1 + ... + v_n * w_n"""
return sum($v_{-} i$ * $w_{-} i$
for $v_{-} i, w_{-} i$ in $\left.z i p(v, w)\right)$

Vector operations

def sum_of_squares(v):

"""v_1 * v_1 + ... + v_n * v_n""" return $\operatorname{dot}(v, v)$

import math

def magnitude(v):
return math.sqrt(sum_of_squares(v)) \# math.sqrt is square root function

Vector operations

- Distance b/w two vectors

$$
\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots+\left(v_{n}-w_{n}\right)^{2}}
$$

def squared_distance(v, w):

$$
" " n\left(v_{-} 1-w_{-} 1\right) * * 2+\ldots+\left(v_{-} n-w_{-} n\right) \text { ** 2""" }
$$ return sum_of_squares(vector_subtract(v, w))

def distance ($v, w)$: return math.sqrt(squared_distance(v, w))
def distance(v, w): return magnitude(vector_subtract(v, w))

Vectors operations

- Using lists as vectors is great for exposition but terrible for performance.
- In production code, you would want to use the NumPy library, which includes a highperformance array class with all sorts of arithmetic operations included.

Matrices

- Two dimensional
- Lists of lists in python

$$
\begin{aligned}
A= & {[[1,2,3], \quad \text { \# A has } 2 \text { rows and } 3 \text { columns }} \\
& {[4,5,6]] } \\
B= & {[[1,2],} \\
& {[3,4], } \\
& {[5,6]] }
\end{aligned}
$$

Matrix operations

def shape(A):
num_rows = len(A)
num_cols = len(A[0]) if A else 0 \# number of elements in first row return num_rows, num_cols

```
def get_row(A, i):
        return A[i]
```

\# A[i] is already the ith row
def get_column(A, j):
return [A_i[j]
\# jth element of row $A_{-} i$
for $A_{-} i$ in $\left.A\right]$ \# for each row $A_{-} i$

Matrix ops

def make_matrix(num_rows, num_cols, entry_fn):

"""returns a num_rows x num_cols matrix
whose (i, j)th entry is entry_fn(i, j)""" return [[entry_fn(i, j)
\# given i, create a list for \mathbf{j} in range(num_cols)] \# [entry_fn(i, 0), ...] for i in range(num_rows)] \# create one list for each i

```
def is_diagonal(i, j):
    """1's on the 'diagonal', 0's everywhere else"""
    return 1 if i == j else 0
```

identity_matrix = make_matrix(5, 5, is_diagonal)
\# [$[1,0,0,0,0]$,
\# $[0,1,0,0,0]$,
\# $[0,0,1,0,0]$,
\# $[0,0,0,1,0]$,
\# $[0,0,0,0,1]]$

Matrix ops

- heights, weights, and ages of 1,000 people
$-1,000 \times 3$ matrix

$$
\begin{aligned}
\text { data }= & {[[70,170,40],} \\
& {[65,120,26], } \\
& {[77,250,19], } \\
& \#
\end{aligned}
$$

Matrix ops

friendships $=[(0,1),(0,2),(1,2),(1,3),(2,3),(3,4)$, $(4,5),(5,6),(5,7),(6,8),(7,8),(8,9)]$
\# user $0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$
friendships = [[0, 1, 1, 0, 0, 0, 0, 0, 0, 0], \# user 0 [1, 0, 1, 1, 0, 0, 0, 0, 0, 0], \# user 1 [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], \# user 2 [0, 1, 1, 0, 1, 0, 0, 0, 0, 0], \# user 3 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0], \# user 4 [0, 0, 0, 0, 1, 0, 1, 1, 0, 0], \# user 5 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], \# user 6 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], \# user 7 [0, 0, 0, 0, 0, 0, 1, 1, 0, 1], \# user 8 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]] \# user 9

Matrix ops

```
friendships[0][2] == 1 # True, 0 and 2 are friends
friendships[0][8] == 1 # False, 0 and 8 are not friends
```

```
friends_of_five = [i # only need
    for i, is_friend in enumerate(friendships[5]) # to look at
    if is_friend] # one row
```


Read more

- Linear Algebra, from UC Davis
- https://www.math.ucdavis.edu/~linear/
- Linear Algebra, from Saint Michael's College
- http://ioshua.smcvt.edu/linearalgebra/

