Nalve Bayes

CENG 499
Introduction to Data Science

Erdogan Dogdu

Classification

Example: Spam Filter

Input: an email
Output: spam/ham

Setup:

— Get a large collection of example
emails, each labeled “spam” or “ham”

— Note: someone has to hand label all
this datal

— Want to learn to predict labels of new,
future emails

Features: The attributes used to
make the ham / spam decision

— Words: FREE!
— Text Patterns: Sdd, CAPS
— Non-text: SenderInContacts

X

Dear Sir.

First, | must solicit your confidence
in this transaction, this is by virture
of its nature as being utterly
confidencial and top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN
THE SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but
I'm beginning to go insane. Had an
old Dell Dimension XPS sitting in
the corner and decided to put it to
use, | know it was working pre
being stuck in the corner, but
when | plugged it in, hit the power
nothing happened.

Example: Digit Recognition

Input: images / pixel grids i?
Output: a digit 0-9 '

Setup:
— Get a large collection of example images, each labeled
with a digit
— Note: someone has to hand label all this data!

— Want to learn to predict labels of new, future digit
images

— Pixels: (6,8)=0ON

— Shape Patterns: NumComponents, AspectRatio,
NumLoops

Features: The attributes used to make the digit decision /

?7?

Other Classification Tasks

e C(Classification: given inputs x, predict labels (classes) y | ﬁP
Le—L@

entify the Object:
A) Dog
8) Car
c) Box
D) Alligetor

 Examples:

— Spam detection (input: document,
classes: spam / ham)

— OCR (input: images, classes: characters)

— Medical diagnosis (input: symptoms, |
classes: diseases) v/

— Automatic essay grading (input: document, 2
classes: grades)

— Fraud detection (input: account activity,
classes: fraud / no fraud)

— Customer service email routing

— ... many more

e C(Classification is an important commercial technology!

Model-Based Classification

Model-Based Classification

* Model-based approach

— Build a model (e.g. Bayes’ net) where
both the label and features are

random variables
— Instantiate any observed features

— Query for the distribution of the label
conditioned on the features

* Challenges @

— What structure should the BN have?
— How should we learn its parameters?

Spam Filter

* Problem: Filter out spam messages

* Events:
— S: Message is spam
— V: Message contains the word Free

* Bayes‘Theorem says: the probability that the
message is spam conditional on containing the
word Free is:

P(VIS)P(S)
PWVISPSHPVI=-SP(=S)

P(SIV)=

Spam Filter

 Assume any message is equally likely to be spam
or not-spam: P(S) =P(—S5)=0.5
P(VIS)
P(VISHP(VI=S)

 Example: if 50% of spam messages have the word
Free, but only 1% of non-spam messages do, then

the probability that any given Free-containing
email is spam is:

P(S1V)=

0.5/0.5+0.01=98%

Spam Filter

A vocabulary of many words w, ..., w

P(X.|S): the probability that a spam message
contains the it" word

P(X.|-S): the probability that a nonspam
message contains the it" word.

P(X;=Xq, ..., X=X, |S)=(X;=x,[S)x ... x (X,=x,|S)

Spam Filter

e Vocabulary = {‘free’,’rolex’)

e Assume half of spam messages include ‘free

account’ and the other half of spam messages
include ‘authentic rolex’

* Naive Bayes estimate that a spam message

contains both “free” and “rolex” is:
P(X,=1, X,=1]5)=(X,=1|S) x (X,=1]S) =.5x.5=.25

Spam Filter

* The probability that a message is spam:

P(X=xI|9)
P X=xISHP(X =x1=9)

by multiply together the individual probability
estimates for each vocabulary word.

P(S|X =x)=

 May cause “underflow” problem
— Instead of p,*p,*...*p,
— exp(logp, ++logp,)

Spam Filter

* Estimates for P(X.|S) and P(X.|-S)

— probabilities that a spam message (or nonspam
message) contains the word w,

— the fraction of spam messages (in the training set)
containing word w;

— Problem: Some words may not appear in spam
« P(“data”|S)=0
* Smoothing by pseudocount k

* P(X.|S) = (k + number of spams containing w;) / (2k + number
of spams)

e if “data” occurs in 0/98 spam documents, and if kis 1, we
estimate P(“data”|S) as 1/100 = 0.01

Implementation

def tokenize(message):

message = message.lower() # convert to lowercase
all_words = re.findall("[a-z0-9']+", message) # extract the words
return set(all_words) # remove duplicates

def count words(training_set):
"""training set consists of pairs (message, is_spam)
counts = defaultdict(lambda: [0, ©])
for message, is_spam in training_set:
for word in tokenize(message):
counts[word][0 if is_spam else 1] += 1

mmnn

return counts

Implementation

def word probabilities(counts, total_spams, total_non_spams, k=0.5):
"""turn the word counts into a list of triplets
w, p(w | spam) and p(w | ~spam)"""
return [(w,
(spam + k) / (total_spams + 2 * k),
(non_spam + k) / (total_non_spams + 2 * k))
for w, (spam, non_spam) in counts.iteritems()]

def spam probability(word_probs, message):
message_words = tokenize(message)

log_prob_if _spam = log_prob_if_not_spam = 0.0

iterate through each word in our vocabulary
for word, prob_if_spam, prob_if _not_spam in word_probs:

if *word* appears in the message,
add the log probability of seeing it
if word in message_words:

log_prob_if_spam += math.log(prob_if_spam)
log_prob_if_not_spam += math.log(prob_if_not_spam)

if *word* doesn't appear in the message

add the log probability of _not_seeing it

which is log(1 - probability of seeing it)

else:
log_prob_if_spam += math.log(1.0 - prob_if_spam)
log_prob_if _not_spam += math.log(1.0 - prob_if_not_spam)

prob_if_spam = math.exp(log_prob_if_spam)
prob_1if_not_spam = math.exp(log_prob_if_not_spam)
return prob_if_spam / (prob_if_spam + prob_if_not_spam)

class NaiveBayesClassifier:

def

def

def

__init_ (self, k=0.5):
self.k = k
self.word_probs = []

train(self, training_set):

count spam and non-spam messages

num_spams = Llen([is_spam
for message, is_spam in training_set
if is_spam])

num_non_spams = len(training_set) - num_spams

run training data through our "pipeline"

word_counts = count_words(training_set)

self.word_probs = word_probabilities(word_counts,
num_spams,
num_non_spams,
self.k)

classify(self, message):
return spam_probability(self.word_probs, message)

