Machine Learning

CENG 499 Introduction to Data Science

Erdoğan Doğdu

Machine Learning

- ML
 - Creating and using models that are learned from data
 - Predictive modelling
 - Data mining
- Model
 - a specification of a mathematical (or probabilistic) relationship that exists between different variables
- Goal
 - Use existing data to develop <u>models</u> that we can use to predict various outcomes for new data

Machine Learning

- Examples
 - Predicting whether an email message is spam or not
 - Predicting whether a credit card transaction is fraudulent
 - Predicting which advertisement a shopper is most likely to click on
 - Predicting which football team is going to win the Super Bowl

Machine Learning Models

- Supervised
 - there is a set of data labeled with the correct answers to learn from
- Unsupervised
 - there are no such labels
- Semisupervised
 - only some of the data are labeled

Overfitting and Underfitting

- Overfitting
 - producing a model that per- forms well on the data you train it on but that generalizes poorly to any new data
- Underfitting
 - producing a model that doesn't perform well even on the training data
 - Keep searching for a working model

Overfitting and Underfitting

Figure 11-1. Overfitting and underfitting

Overfitting and Underfitting

- Models that are too complex lead to overfitting and don't generalize well beyond the data they were trained on
- Use different data to train the model and to test the model.
 - Example: Split data into 3 parts, use 2 for training, and 1 for testing (66% vs 33%)

Train vs Test Split

```
def split_data(data, prob):
    """split data into fractions [prob, 1 - prob]"""
    results = [], []
    for row in data:
        results[0 if random.random() < prob else 1].append(row)
    return results</pre>
```

```
model = SomeKindOfModel()
x_train, x_test, y_train, y_test = train_test_split(xs, ys, 0.33)
model.train(x_train, y_train)
performance = model.test(x_test, y_test)
```

Overfitting

- Still might be overfitting if
 - there are <u>common patterns</u> in the test and train data that wouldn't generalize to a larger data set.
- Or, if you are using test set to choose from a number of models,
 - Then split data into train, validate, test sets

Correctness

- Given a set of "labeled" data and a predictive model, data points lie in one of these categories:
 - True positive: "This message is spam, and we correctly predicted spam."
 - False positive (Type 1 Error): "This message is not spam, but we predicted spam."
 - False negative (Type 2 Error): "This message is spam, but we predicted not spam."
 - True negative: "This message is not spam, and we correctly predicted not spam."

Confusion Matrix

	Spam	not Spam
predict "Spam"	True Positive	False Positive
predict "Not Spam"	False Negative	True Negative

Accuracy

 Predict leukemia if and only if the baby is named Luke (which sounds sort of like "leukemia")

	leukemia	no leukemia	total
"Luke"	70	4,930	5,000
not "Luke"	13,930	981,070	995,000
total	14,000	986,000	1,000,000

```
def accuracy(tp, fp, fn, tn):
    correct = tp + tn
    total = tp + fp + fn + tn
    return correct / total

print accuracy(70, 4930, 13930, 981070) # 0.98114
Good?
12
```

Precision & Recall & F1

 Precision: how accurate our *positive* predictions were def precision(tp, fp, fn, tn): return tp / (tp + fp)

print precision(70, 4930, 13930, 981070) # 0.014

- Recall: what fraction of the positives our model identified def recall(tp, fp, fn, tn): return tp / (tp + fn)
 print recall(70, 4930, 13930, 981070) # 0.005
- **F1**: harmonic mean of precision and recall and necessarily lies between them

```
def f1_score(tp, fp, fn, tn):
    p = precision(tp, fp, fn, tn)
    r = recall(tp, fp, fn, tn)
```

Model Correctness

- Choice of a model involves a **trade-off** between precision and recall.
 - A model that predicts "yes" when it's even a little bit confident will probably have a high recall but a low precision;
 - A model that predicts "yes" only when it's extremely confident is likely to have a low recall and a high precision.

Feature Extraction and Selection

- *Features:* inputs we provide to our model
- When your data <u>doesn't have enough</u> <u>features</u>, your model is likely to **underfit**.
- When your data <u>has too many features</u>, it's easy to **overfit**.

Feature Engineering

- Simple case: features are given
 - Example:
 - Given: Years of experience, Salary
 - Predict: Salary based on years of experience
- Extract features:
 - Spam detection
 - Given: Email texts
 - Extract features:
 - f1: Does the email contain the word "Viagra"?
 - f2: How many times does the letter d appear?
 - f3: What was the domain of the sender?

Model Type

- The type of features constrains the type of model
- Yes-No features

– Naïve Bayes model

• Numeric features

- Regression model

• Numeric or categorical features

Decision trees model

Feature Engineering

- Remove features
 - Dimensionality reduction
 - Regularization
- How to do all of these:
 - Experience
 - Domain expertise